
Overview of the Global Arrays
Parallel Software Development Toolkit

Bruce Palmer
Jarek Nieplocha, Manoj Kumar Krishnan, Vinod
Tipparaju, Harold Trease

Pacific Northwest National Laboratory

Overview

� Background
� Programming Model
� Core Capabilities
� Applications
� Summary

Distributed Data vs Shared Memory

Distributed Data:
Data is explicitly associated with each processor, accessing data

requires specifying the location of the data on the processor and
the processor itself.

(0xf5670,P0)

(0xf32674,P5)

P0 P1 P2

Data locality is
explicit but data
access is complicated.
Distributed computing
is typically
implemented with
message passing
(e.g. MPI)

Distributed Data vs Shared Memory
(Cont).

Shared Memory:
Data is an a globally accessible address space, any processor can

access data by specifying its location using a global index

Data is mapped out in
a natural manner
(usually
corresponding to the
original problem) and
access is easy.
Information on data
locality is obscured
and leads to loss of
performance.

(1,1)

(150,200)

(47,95)

(106,171)

Global Arrays

single, shared data structure/
global indexing

e.g., access A(4,3) rather than
buf(7) on task 2

Physically distributed data

Distributed dense arrays that can be accessed through a
shared memory-like style

Global Address Space

Global Arrays (cont.)

� Shared memory model in context of
distributed dense arrays

� Much simpler than message-passing for
many applications

� Complete environment for parallel code
development

� Compatible with MPI
� Data locality control similar to distributed

memory/message passing model
� Extensible
� Scalable

Remote Data Access in GA
Message Passing:

identify size and location of data
blocks

loop over processors:
if (me = P_N) then

pack data in local message
buffer
send block of data to
message buffer on P0

else if (me = P0) then
receive block of data from
P_N in message buffer
unpack data from message
buffer to local buffer

endif
end loop

copy local data on P0 to local buffer

Global Arrays:

NGA_Get(g_a, lo, hi, buffer, ld);

Global Array
handle

}

Global upper
and lower
indices of data
patch

Local buffer
and array of
strides

P0

P1

P2

P3

Data Locality

What data does a processor own?

NGA_Distribution(g_a, iproc, lo, hi);

Where is the data?

NGA_Access(g_a, lo, hi, ptr, ld)

Use this information to organize calculation so that
maximum use is made of locally held data

Global Array Model of Computations

local memory

Shared Object

copy to local m
em

ory

get

compute/update

local memory

Shared Object

co
py

 to
 sh

ar
ed

 o
bj

ec
t

local memory

put

Example: Matrix Multiply

local buffers on the
processor

global arrays
representing
matrices

•

•

=

=

getput

dgemm

Matrix Multiply
(a better version)

local buffers on the
processor

more scalable!
(less memory,
higher parallelism)•

•

=

=

getatomic accumulate

dgemm

One-sided Communication

message passing
MPI

P1P0
receive send

P1P0
put

one-sided communication
SHMEM, ARMCI, MPI-2-1S

Message Passing:
Message requires cooperation
on both sides. The processor
sending the message (P1) and
the processor receiving the
message (P0) must both
participate.

One-sided Communication:
Once message is initiated on
sending processor (P1) the
sending processor can
continue computation.
Receiving processor (P0) is
not involved.

Structure of GA

Message Passing
Global operations

ARMCI
portable 1-sided
communication

put,get, locks, etc

distributed arrays layer
memory management, index translation

system specific interfaces
LAPI, GM/Myrinet, threads, VIA,..

Global Arrays
and MPI are
completely
interoperable.
Code can
contain calls
to both
libraries.

Fortran 77 C C++ Babel

F90

Python

JavaApplication
programming
language interface

Core Capabilities

� Distributed array library
� dense arrays 1-7 dimensions
� four data types: integer, real, double precision, double complex
� global rather than per-task view of data structures
� user control over data distribution: regular and irregular

� Collective and shared-memory style operations
� ga_sync, ga_scale, etc
� ga_put, ga_get, ga_acc
� nonblocking ga_put, ga_get, ga_acc

� Interfaces to third party parallel numerical libraries
� PeIGS, Scalapack, SUMMA, Tao

⌧ example: to solve a linear system using LU factorization
call ga_lu_solve(g_a, g_b)

instead of
call pdgetrf(n,m, locA, p, q, dA, ind, info)
call pdgetrs(trans, n, mb, locA, p, q, dA,dB,info)

Interoperability and Interfaces

� Language interfaces to Fortran, C, C++, Python
� Interoperability with MPI and MPI libararies

� e.g., PETSC, CUMULVS

� Explicit interfaces to other systems that expand
functionality of GA
�ScaLAPACK-scalable linear algebra software
�Peigs-parallel eigensolvers
�TAO-advanced optimization package

Application Areas

thermal flow
simulation

Visualization and image
analysis

electronic structure glass flow
simulation

material sciences molecular dynamics

Others: financial security forecasting, astrophysics, geosciences

biology

Lennard-Jones Simulation (MD)

� Molecular Dynamics (MD)
Simulation:
�Simulates particle systems

⌧Solids, liquids, gases
⌧Biomolecules on Earth
⌧Motion of stars, etc.

� GA Implementation:
�Based on force decomposition
�Dynamic Load Balancing 
















−





=

612

4)(
rr

rU σσε

Lennard Jones Potential

MD Performance Results

Le nnard Jo ne s M D
12 0 0 0 a t o ms s imula t io n

0

5

10

15

20

25

30

35

32 64 100 128

Procs

%
 Im

pr
ov

em
en

t o
ve

r M
PI

one-s ided b locking

one-s ided non-b locking

Le nnard Jo ne s M D
6 553 6 a t o ms s imula t io n

0

10

20

30

40

50

60

16 32 64 128

Procs
%

 im
pr

ov
em

en
t o

ve
r M

PI

one-s ided b lo cking

one-s ided no n-b locking

Performance improvement over MPI in molecular dynamics
simulation involving 12000 (left) and 65536 (right) atoms

Energy Optimization GA/TAO

� LJMD (Lennard Jones Molecular Dynamics)
code
� computes the function and gradients of the

Lennard-Jones clusters (Molecular
Conformation) problem

�Uses GA for communication
�Uses TAO optimization solvers

� GA/TAO Interoperability
�GA provides TAO the core linear algebra

support for manipulating vectors, matrices,
and linear solvers

� GA Distributed Array Descriptor Factory
(GA-DADF) provides array descriptors to
Visualization component for visualizing
molecules

GA/TAO Interaction

Application Driver
(compute xo)

Application Driver
(compute xo)

TAOTAO

GA
Linear Algebra

Factory

GA
Linear Algebra

Factory

Lennard
Jones

System
(computes E,F)

Lennard
Jones

System
(computes E,F)

GA
(inter-process

communication)

GA
(inter-process

communication)

GA
DAD Factory

GA
DAD Factory

VisualizationVisualization

E F S

{
xi+1

F
E
xi

dx

dx

F - gradient
E(x) - energy x - coordinates
S - update dr - array descriptors

Common Component Architecture
(CCA)

� Molecular Dynamics of a Lennard-Jones System
� Components Used

⌧LJMDModel - Lennard Jones Model
⌧GA_Classic - Native GA Component
⌧GA_DADFactory - GA’s Distributed Array Factory
⌧GA_LAFactory - Linear Algebra based on GA
⌧Petsc_LinearAlgebra - Linear Algebra based on Petsc
⌧TaoSolver - Optimization Component
⌧Visualization - Viz Component (OpenGL)
⌧Driver - Driver Component

CCA Wiring Diagram

Non-Blocking Communication

� New functionality in GA version 3.3
� Allows overlapping of data transfers and computations

� Technique for latency hiding

� Nonblocking operations initiate a communication call and then
return control to the application immediately

� operation completed locally by making a call to the wait routine

SUMMA Matrix Multiplication

A B C=A.B

Computation

Comm.
(Overlap)

Issue NB Get A and B blocks
dodo (until last chunk)

issue NB Get to the next blocks
wait for previous issued call
compute A*B (sequential dgemm)
NB atomic accumulate into “C”

matrix
donedone

Advantages:Advantages:
- Minimum memory
- Highly parallel
- Overlaps computation and communication

- latency hiding
- exploits data locality
- patch matrix multiplication (easy to use)
- dynamic load balancingpatch matrix multiplication

=

SUMMA Matrix Multiplication:
Improvement over MPI

Non-Blocking Communication Performance

Matrix Size 1024

0

5

10

15

20

25

30

4 8 16 32 48 64 128

Procs

%
 im

p
ro

ve
m

en
t

o
ve

r
M

P
I blocking

non-blocking

Matrix Size 2048

0

5

10

15

20

25

16 32 64 128
Procs

%
 Im

p
ro

ve
m

en
t

o
ve

r
M

P
I blocking

non-blocking

*2.4Ghz P4 Linux cluster, Myrinet-GM interconnect (at SUNY, Buffalo)

Lattice Boltzmann Simulation

)),(),((1),(),(tftftfttf eq
iiiii rrrer −−=∆++

τ

Relaxation Stream

normal global array
global array with ghost cells

Ghost Cells

Operations:

NGA_Create_ghosts - creates array with ghosts cells
GA_Update_ghosts - updates with data from adjacent processors
NGA_Access_ghosts - provides access to “local” ghost cell elements
NGA_Nbget_ghost_dir - nonblocking call to update ghosts cells

Ghost Cell Update

Automatically update ghost
cells with appropriate data
from neighboring
processors. A multiprotocol
implementation has been
used to optimize the
update operation to match
platform characteristics.

Ghost Cell Application
Performance

100

1000

10000

1 10 100 1000

Total

Update

Number of Processors

Mirrored Arrays

� Create Global Arrays that are replicated between SMP
nodes but distributed within SMP nodes

� Aimed at fast nodes connected by relatively slow
networks (e.g. Beowulf clusters)

� Use memory to hide latency
� Most of the operations supported on ordinary Global

Arrays are also supported for mirrored arrays
� Global Array toolkit augmented by a merge operation

that adds all copies of mirrored arrays together
� Easy conversion between mirrored and distributed

arrays

Mirrored Arrays (cont.)

Distributed Mirrored Replicated

NWChem DFT Calculation

http://www.emsl.pnl.gov/docs/nwchem

Disk Resident Arrays
� Extend GA model to disk

�system similar to Panda (U. Illinois) but higher level
APIs

� Provide easy transfer of data between N-dim
arrays stored on disk and distributed arrays
stored in memory

� Use when
�Arrays too big to store in core
�checkpoint/restart
�out-of-core solvers

global array

disk resident array

High Bandwidth Read/Write

Disk Resident Array

Disks

Disk Resident Arrays
automatically
decomposed into
multiple files

Image Processing Application
PiCEIS

IKONOS ISAT Texture (George He)

Parallel Computational Environment for Imaging Science

erjurrus@pnl.gov

Scalable Performance of DRA

file systems
I/O buffers

SMP node

1 2 3
8

16
32

1

2
3

0
50

100
150
200
250
300
350
400

b
an

d
w

id
th

 [
M

B
/s

]

array rank

di
sk

s

Sparse data managment

� Sparse arrays can be implemented with
�1-dimensional global arrays

⌧Nonzero elements, row and/or index arrays

�Set of new operations follow Thinking Machines CMSSL
⌧Enumerate
⌧Pack/unpack
⌧Binning (NxM mapping)
⌧2-key binning/sorting functions
⌧Scatter_with_OP, where OP={+,min,max}
⌧Segmented_scan_with_OP, where OP={+,min,max,copy}

� Adopted in NWPhys/NWGrid AMR package
http://www.emsl.pnl.gov/nwgrid

Related Programming Tools

� Co-Array Fortran
�Distributed Arrays
�One-Sided Communication
�No Global View of Data

� UPC
�Model Similar to GA but only applicable to C programs
�Global Shared Pointers could be used to implement GA

functionality
⌧C does not really support multi-dimensional arrays

� High level functionality in GA is missing from these
systems

Summary

� The idea has proven very successful
�efficient on a wide range of architectures

⌧core operations tuned for high performance

�library substantially extended but all original (1994) APIs
preserved

�increasing number of application areas

� Supported and portable tool that works in real
applications

� Future work
�Fault tolerance

Major Milestones

� 1994 - 1st public release of GA
� 1995 - Metacomputing (grid) extensions of GA
� 1996 - DRA, parallel I/O for GA programs developed
� 1997 - development of ARMCI started
� 1998 - GA rewritten to use ARMCI
� 1999 - GA 3.0 released, n-dimensional arrays
� 2000 - periodic one-sided operations
� 2001 - support for sparse data management
� 2002 - ghost cell operations, n-dim DRA
� 2003 – mirrored arrays, improved matrix multiply, non-

blocking get operations

Source Code and More
Information

� Version 3.3 available in beta release
� Homepage at http://www.emsl.pnl.gov:2080/docs/global/
� Platforms (32 and 64 bit)

� IBM SP
� Cray T3E, SV1, X1
� Linux Cluster with Ethernet, VIA, Myrinet, Infiniband, or Quadrics
� Solaris
� Fujitsu
�Hitachi
�NEC
�HP
�Windows

